

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086

DEPARTMENT OF PHYSICS

Programme Learning Outcomes/Intended Programme Learning Outcomes

Graduates of a Bachelor's Degree will have a broad and coherent body of knowledge in their disciplines, with a deep understanding of the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning.

At the end of an undergraduate programme students will be able to

- Describe and define critical concepts in their discipline
- Explain and discuss concepts and ideas pertaining to their discipline
- · Demonstrate a broad understanding of their discipline
- Demonstrate communication skills to present a clear, coherent and independent exposition of knowledge and ideas
- Demonstrate understanding of the interconnections of knowledge within and across disciplines
- Apply knowledge, theories, methods, and practices in their chosen field of study to address real-world challenges and opportunities
- Demonstrate proficiency in experimental techniques and methods of analysis appropriate for their area of specialisation
- · Generate and analyse data using appropriate quantitative tools
- Construct and test hypotheses
- Demonstrate cognitive and technical skills to synthesise knowledge in interrelated disciplines
- Demonstrate critical thinking and judgement in identifying and solving problems with intellectual independence
- Demonstrate the skills needed to be able to function successfully in their field
- Show responsibility and understanding of local and global issues
- Demonstrate through their actions and speech that they are agents of social justice and change
- Practice the discipline's code of ethics in their academic, professional and personal lives
- Practice the values of democracy and principles of human rights
- Show self-awareness and emotional maturity
- Demonstrate career and leadership readiness
- Demonstrate intercultural, interracial, interclass, inter-caste, and ethical competency
- Exhibit the ability to work in teams

• Exhibit a strong sense of professionalism in a range of contexts

• Demonstrate sensitivity and readiness to share their knowledge, experience, and capabilities with the marginalised and oppressed in their communities.

PROGRAMME SPECIFIC LEARNING OUTCOMES

On completion of this programme, students will be able to

• Acquire an understanding of core knowledge in Physics, including the major premises

of Classical Mechanics, Electricity and Magnetism and Modern Physics.

• Develop proficiency in mathematics and the mathematical concepts needed for a proper understanding of Physics.

• Exhibit laboratory skills learnt that enabled them to take measurements in physics laboratory and analyze the measurements to draw valid conclusions.

• Establish proficiency in the acquisition of data using a variety of laboratory instruments and in the analysis and interpretation of such data.

• Enhance their oral and written scientific communication, and will prove that they can think critically and work independently.

• Demonstrate an understanding of the impact of Physics and Science on society.

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 B.Sc. DEGREE : BRANCH III - PHYSICS COURSES OF STUDY

(Effective from the academic year 2019 - 2020)

CHOICE BASED CREDIT SYSTEM Total Marks Hours С on ti n L Т Pr uo **Subject Code Title of Course** ec ut ac us tu or tic А al E En re ial SS Η Η Μ Η xa es d С Se axi ou ou ou m S Η m me m re rs rs rs di (L (T **(P** ou en ste u ts rs t r m Semester - I 10 19PH/MC/PS14 Properties of Matter and Sound 4 4 1 0 3 50 50 0 10 2 3 0 0 3 50 50 19PH/MC/P112 **Experimental Physics I** 0 10 3 3 0 0 50 19PH/SS/HC13 Life Skills: Health, Energy and Computer Basics 0

Allied Core Offered to the Department of Mathematics										
	1									
19PH/AC/PM13	Physics for Mathematics I	3	3	0	0	3	50	50	10 0	
			5	0	0	5	50	50	10	
19PH/AC/P112	Physics Practicals - I	2	0	0	3	3	50	50	0	
	Life Skills: Personality Development (EL)	3	3	0	0	-	50	-	10 0	
			_		-				10	
CD/ET/SC	Value Education	2	2	0	0	-	50	-	0	
	Semester - II		1						10	
19PH/MC/TS23	Thermal Physics and Statistical Mechanics	3	3	1	0	3	50	50	10 0	
		_			_	_			10	
19PH/MC/ME24	Mechanics	4	4	1	0	3	50	50	0	
19PH/MC/P222	Experimental Physics II	2	0	0	3	3	50	50	0	
				0	0		50		10	
19PH/GC/ES12 Environmental Studies 2 2 0 0 - 0										
Alleu Core Ollere									10	
19PH/AC/PM23	Physics for Mathematics II	3	3	0	0	3	50	50	0	
19PH/AC/P222	Physics Practical II	2	0	0	3	3	50	50	10 0	
1)111/110/1222			0	0			50	50	10	
	Basic Tamil I/General Elective I	2	2	0	0	-	50	-	0	
	Semester - III		1				i			
19PH/MC/EL33	Electronics I	3	3	1	0	3	50	50	10 0	
		5	5	1	0		50	50	10	
19PH/MC/OP34	Optics	4	4	1	0	3	50	50	0	
19PH/MC/P332	Experimental Physics III	2	0	0	3	3	50	50	10 0	
Allied Core Offere	d to the Department of Chemistry									
				0	0		50	50	10	
19PH/AC/PC33	Physics for Chemistry I	3	3	0	0	3	50	50	0	
19PH/AC/P132	Physics Practical I	2	0	0	3	3	50	50	0	
CD/ET/SC	Value Education	2	2	0	0		50		10	
CD/E1/SC		2	2	0	0	-	50	-	10	
	Basic Tamil II/General Elective II	2	2	0	0	-	50	-	0	
	Semester - IV	ī					1	i		
	Mathematical Physics		1	1	0	2	50	50	10	
17111/1viC/1viF 44		+		1	0		50	50	10	
19PH/MC/P442	Experimental Physics IV	2	0	0	3	3	50	50	0	
Allied Core Offere	d to the Department of Chemistry								10	
19PH/AC/PC43	Physics for Chemistry II	3	3	0	0	3	50	50	<u>10</u>	

19PH/AC/P242	Physics Practical II	2	0	0	3	3	50	50	10 0	
19PH/SS/PS13	Life Skills: Personal and Social	3	3	0	0	_	50	-	10 0	
	Maior Elective I									
Semester - V										
19PH/MC/MM53	Microprocessors and Microcontrollers	3	3	1	0	3	50	50	10 0	
19PH/MC/SS54	Solid State Physics	4	4	1	0	3	50	50	10 0	
19PH/MC/EM54	Electromagnetism	4	4	1	0	3	50	50	10 0	
19PH/MC/P552	Experimental Physics V	2	0	0	3	3	50	50	10 0	
19PH/MC/P652	Experimental Physics VI	2	0	0	3	3	50	50	10 0	
Inter Disciplinary	Core Courses (PH and EC) to students of Physics	s and	Econ	omic	S					
19ID/IC/RE55	Renewable Energy and Energy Economics	5	5	1	0	3	50	50	10 0	
	General Elective III	2	2	0	0	_	50	-	10 0	
	SAP/SL	2	2	0	0	_	50	_	10 0	
	Semester - VI				•	•	•			
									10	
19PH/MC/EL63	Electronics II	3	3	1	0	3	50	50	0	
19PH/MC/AN64	Atomic and Nuclear Physics	4	4	1	0	3	50	50	10 0	
19PH/MC/QR64	Quantum Mechanics and Relativity	4	4	1	0	3	50	50	10 0	
19PH/MC/P762	Experimental Physics VII	2	0	0	3	3	50	50	10 0	
19PH/MC/P862	Experimental Physics VIII	2	0	0	3	3	50	50	10 0	
19VE/SS/HL63	Life Skills:An Approach to a Holistic Way of Life	3	3	0	0	-	50	-	10 0	
	Major Elective II									
	General Elective IV	2	2	0	0	-	50	-	10 0	
Major Elective Co	urses									
19PH/ME/EN45	Essentials of Nanoscience	5	4	1	0	3	50	50	10 0	
19PH/ME/LP45	Laser Physics	5	4	1	0	3	50	50	10 0	
19PH/ME/CS45	Communication Systems	5	4	1	0	3	50	50	10 0	
19PH/ME/SP45	Spectroscopy	5	4	1	0	3	50	50	10 0	
19PH/ME/PR45	Project	5	0	0	5	-	50	50	10 0	
General Elective C	General Elective Courses									

									10
19PH/GE/BP22	Basic Principles of Physics	2	1	0	1	-	50	0	0
									10
19PH/GE/HE22	Home Electrical Installations	2	1	0	1	-	50	0	0
									10
19PH/GE/EP22	Energy Physics	2	1	0	1	-	50	0	0
									10
19PH/GE/WL22	Wireless Communication	2	1	0	1	-	50	0	0
Independent Election	ive Courses	-							
			0	0	0			10	10
19PH/UI/GP23	Geophysics	3	0	0	0	3	-	0	0
			0	0	0			10	10
19PH/UI/GP23	Geophysics	3	0	0	0	3	-	0	0

PROPERTIES OF MATTER AND SOUND

CODE:19PH/MC/PS14 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To develop in students a theoretical understanding of properties of matter

• To enable the students to understand the fundamental concepts of atomic physics and its application in various fields

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Describe and explain the properties and behavior of liquids and solids
- · Identify various properties responsible for their behavior
- Understand the basic principles of Ultrasonics and Acoustics
- Describe the production and propagation of sound
- Visualize wave motion and develop intuition about waves

EXPERIMENTAL PHYSICS I

CODE:19PH/MC/P112 CREDITS :2 L T P :0 0 3 TOTAL HOURS :39

LIFE SKILLS – HEALTH, ENERGY AND COMPUTER BASICS

CODE: 19PH/SS/HC13 CREDITS: 3 L T P: 3 0 0 TOTAL TEACHING HOURS: 39

OBJECTIVES OF THE COURSE

• To sensitise students to the fact that good health lies in nature

• To create an awareness about energy obtained from different components of food and to plan for a balanced diet

• To enable students to understand the significance of energy conservation and strategies for conserving energy

• To provide a basic knowledge of computer fundamentals and Email configuration **COURSE LEARNING OUTCOMES**

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• identify the importance of a few plants and their health benefits

· recognise the causes and symptoms of common disorders

· calculate food energy values and follow the Recommended Dietary Allowances

(RDA) and appreciate the need for them.

• conserve energy and use it responsibly

• understand computer configuration for purchase of personal computer and E mail Setting

PHYSICS FOR MATHEMATICS I

CODE:19PH/AC/PM13 CREDITS:3 L T P:3 0 0 TOTAL TEACHING HOURS:39

OBJECTIVE OF THE COURSE

• To understand the fundamental concepts of Mechanics, Properties of matter and theory of Relativity.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

· Identify various properties responsible for their behavior

• Understand the concept of elasticity and identify the materials suitable for a particular application

- Apply the concepts of forces existing
- Apply Lagrangian equation to solve complex problems
- Understand the fundamental concepts of the theory of relativity.

CODE:19PH/AC/P112 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

PHYSICS PRACTICAL I

THERMAL PHYSICS AND STATISTICAL MECHANICS CODE:19PH/MC/TS23 CREDITS:3

L T P:3 1 0 TOTAL TEACHING HOURS:52

OBJECTIVES OF THE COURSE

- · To understand the concepts of heat and temperature
- To apply thermodynamic relations to problem solving

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Understand laws of Thermodynamics both from microscopic and macroscopic point of view.

- Visualize real physical systems and processes by applying laws of thermodynamics.
- Develop a working knowledge of thermal physics and to use this knowledge to explore various applications
- · Give an account of the theory of statistical mechanics
- · Show an analytic ability to solve problems related to statistical mechanics

MECHANICS

CODE:19PH/MC/ME24 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- · To understand physical laws and concepts of static and dynamic bodies
- · To introduce the idea of Lagrangian Mechanics

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Have a basic understanding of the laws and principles of mechanics
- Apply the concepts of forces existing in the system
- Understand the forces of physics in everyday life
- Visualize the conservation laws
- · Apply Lagrangian equation to solve complex problems

EXPERIMENTAL PHYSICS II

CODE:19PH/MC/P222 CREDITS :2 L T P :0 0 3 TOTAL HOURS :39

CODE:19PH/GC/ES12

ENVIRONMENTAL STUDIES

CREDITS:2 L T P:2 0 0 TOTAL TEACHING HOURS:26

OBJECTIVES OF THE COURSE

- To help students to gain the fundamental knowledge of the environment
- To create in students an awareness of current environmental issues
- To inculcate in students an eco-sensitive, eco-conscious and eco-friendly attitude

COURSE LEARNING OUTCOMES

On successful completion of this course, students will be able to

- · Articulate the interdisciplinary context of environmental issues
- Adopt sustainable alternatives that integrate science, humanities and social perspectives
- Appreciate the importance of biodiversity and a balanced ecosystem
- Calculate one's carbon footprint

PHYSICS FOR MATHEMATICS II

CODE:19PH/AC/PM23 CREDITS:3 L T P:3 0 0 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

- To understand the principles of Electricity and Magnetism
- To introduce fundamental concepts of Optics and Electronics

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand the basics of various phenomena in geometrical and wave optics
- Understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life.

• They will understand the theoretical and experimental background of Electricity and magnetism and will appreciate their general significance and applications.

- Will be able to understand the working of digital circuits.
- To understand the basic principles of operational amplifier

PHYSICS PRACTICAL II

CODE:19PH/AC/P222 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

ELECTRONICS I

CODE:19PH/MC/EL33 CREDITS:3 L T P:3 1 0 TOTAL TEACHING HOURS:52

OBJECTIVES OF THE COURSE

• To understand the concept of digital principles as applied to microprocessors and computers

• To develop knowledge in combinational logic and sequential logic circuits and their Applications

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Explain fundamental concepts of decimal number systems and represent them in powers of the base

- Understand the implementation of Boolean Algebra to circuits
- · Identify almost all electronic components and their working principles
- Explain basic circuit concepts and responses
- Describe the working of few special purpose diodes

OPTICS

CODE:19PH/MC/OP34 CREDITS:4 L T P:4 1 0 TOTALTEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To expose the students to the fundamentals of optics.
- To provide the students a clear idea about the applications of optics.

OUTCOME OF THE COURSE

On successful completion of the course, students will be able to

- Understand the basics of various phenomena in geometrical and wave optics
- Explain the behavior of light in different mediums
- Understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life.
- Understand the design of optical systems and methods to minims aberrations

• Solve problems in optics by selecting the appropriate equations and performing numerical or analytical calculations

CODE:19PH/MC/P332

EXPERIMENTAL PHYSICS III

CREDITS :2 L T P :0 0 3 TOTAL HOURS :39

PHYSICS FOR CHEMISTRY I

CODE:19PH/AC/PC33 CREDITS:3 LTP:3 0 0 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

• To acquaint students with the fundamental laws and principles of physics

• To familiarise students with developments in modern optics

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- To identify various properties of matter, responsible for their behavior
- To apply the concepts of forces existing
- · Understand the basics of various phenomena in geometrical and wave optics

• Understand the differences in the important phenomena namely interference, diffraction

and Polarization and apply the knowledge in day to day life.

• Describe the basic concepts of the theory of Relativity

PHYSICS PRACTICAL I

CODE:19PH/AC/P132 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

MATHEMATICAL PHYSICS

CODE:19PH/MC/MP44 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:52

OBJECTIVES OF THE COURSE

· To enable students to learn various mathematical techniques

· To facilitate the applications of these techniques to physical problems

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Acquire advanced general knowledge in Mathematics and Physics, and apply the specialized knowledge in specific areas.

• Appreciate practice of relevant mathematical methods to understand concepts in Physics

- · Demonstrate accurate and efficient use of specific mathematical physics techniques
- Solve problems using mathematical methods
- · Describe the significance of mathematical methods in modern physics

EXPERIMENTAL PHYSICS IV

CODE:19PH/MC/P442 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

PHYSICS FOR CHEMISTRY II

CODE:19PH/AC/PC43 CREDITS:3 LTP:3 0 0 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

• To understand the basic concepts of electricity and magnetism

· To familiarise students with developments in modern physics and electronics

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

· Understand the theoretical and experimental background of Electricity and magnetism

and will appreciate their general significance and applications.

- Understand the working of digital circuits.
- To understand the basic principles of operational amplifier.
- To understand the basic principles of Laser
- Implement Boolean algebra into circuits.

PHYSICS PRACTICAL II

CODE:19PH/AC/P242 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

LIFE SKILLS: PERSONAL AND SOCIAL

CODE: 19PH/SS/PS13 CREDITS: 3 L T P: 3 0 0 TOTAL TEACHING HOURS: 39

OBJECTIVES OF THE COURSE

· To enable students to understand the working of Indian Governance and laws

• To empower students as citizens by teaching them how to use the RTI, the PIL and

the FIR

• To provide students an insight into the strengths and virtues essential to improve wellbeing

• To bring about awareness of societal dynamics

• To create awareness, impart knowledge and hone skills necessary to make sound financial decisions

COURSE LEARNING OUTCOMES

On successful completion of this course, students will be able to

- · demonstrate knowledge of the working of the government
- file RTIs, PILs and FIRs
- improve their quality of life
- exhibit social consciousness
- exhibit prudent behaviour in managing personal finance

MICROPROCESSORS AND MICROCONTROLLERS CODE:19PH/MC/MM53

CREDITS:3 L T P:3 1 0 TOTAL TEACHING HOURS:52

OBJECTIVES OF THE COURSE

- To understand the architecture of microprocessor 8085
- To develop programming skills for writing assembly languages for microprocessor 8085
- To learn the basic concepts of microcontroller 8051

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Analyze the architecture of 8085 and 8051
- Understand the concept of embedded system
- · Distinguish and analyze the properties of microprocessors and microcontrollers
- Understand the instruction set and write programs for basic arithmetic operations
- Describe the application of the microprocessor and microcontroller in electronic devices.

SOLID STATE PHYSICS

CODE :19PH/MC/SS54 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To study crystal bonding and imperfections in crystals

• To learn the properties of solids

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Explain mechanical properties of solids and connect these to the type of bonding in them.

• Employ the classical and quantum mechanical theories needed to understand the physical properties of solids.

• Appreciate the physics of metals, semiconductors and insulators.

• Understand the impact of crystal imperfections on the properties of solids

• Explain simple theories for conduction of heat and electrical current in metals

ELECTROMAGNETISM

CODE:19PH/MC/EM54 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS 65

OBJECTIVES OF THE COURSE

• To enable students to understand the fundamental concepts of classical electromagnetic theory

· To understand the complementary nature of electric and magnetic phenomena

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Understand the theoretical and experimental background of Electricity and magnetism
- Appreciate their general significance and applications.
- Explain natural physical processes and related technological advances by applying the knowledge of electricity and magnetism.

· Calculate the electric field, force, potential for various charge distributions

• Apply Maxwell's equations for electromagnetic wave propagation

EXPERIMENTAL PHYSICS V

CODE:19PH/MC/P552 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

EXPERIMENTAL PHYSICS VI

CODE:19PH/MC/P652 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

RENEWABLE ENERGY AND ENERGY ECONOMICS CODE: 19ID/IC/RE55 CREDITS:5 L T P:5 1 0 TOTAL TEACHING HOURS:78

OBJECTIVES OF THE COURSE

• To understand the importance of renewable energy with special reference to solar and wind energy

- · To understand various concepts in utilization of Solar energy
- To acquire knowledge about the principle of wind energy production
- To study the consumer and producer preference for renewable energy
- To understand and evaluate the energy policies adopted in India.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- To analyze solar radiation on earth's surface
- To evaluate the wind energy production at a site
- · Evaluate the demand and supply of renewable energy
- · To calculate the cost and benefits of alternative energy
- · To critically analysis the energy policies adopted in India

ELECTRONICS II

CODE:19PH/MC/EL63 CREDITS:3 L T P:3 1 0 TOTAL TEACHING HOURS:52

OBJECTIVES OF THE COURSE

- · To study the design and applications of amplifiers
- To understand the basic principles of operational amplifier

COURSE LEARNING OUTCOMES

- · Apply circuit theory to analyze the electronic circuits
- Analyze A/D and D/A conversion methods
- Explain the functioning of solid state devices including unijunction transistor and field effect transistor
- · Understand and analyze the methods of transistor biasing
- Have a knowledge of implementing operational amplifiers in various digital applications

ATOMIC AND NUCLEAR PHYSICS

CODE:19PH/MC/AN64 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To learn the fundamental concepts of nuclear physics

• To acquaint students with the phenomenon of radioactivity, nuclear energy and elementary Particles

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand the properties of the nucleus
- Appreciate the various significant processes in nucleus and its behavior
- Explore the interaction between subatomic particles
- Understand the theoretical aspect of the nuclear fusion and fission process
- Acquire knowledge and understand about the electronic and nuclear structure of atoms

QUANTUM MECHANICS AND RELATIVITY CODE:19PH/MC/QR64 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To introduce the basic concepts and fundamental phenomena of quantum physics

• To understand the relationship between space and time, mass and energy.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Perform calculations using the Lorentz transformation formulae and define the notion of an inertial frame and the concept of an observer.

• State the principles of Special Relativity and use them to derive time dilation and length contraction.

• Define relativistic energy and momentum, and use these to solve problems in mechanics.

• Use the ideas of a wave-particle duality and the uncertainty principle to solve problems in quantum mechanics.

• Perform calculations using the quantum wave function of a particle moving in one dimension, including making use of the momentum operator.

EXPERIMENTAL PHYSICS VII

CODE:19PH/MC/P762 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

EXPERIMENTAL PHYSICS – VIII

CODE:19PH/MC/P862 CREDITS:2 L T P:0 0 3 TOTAL HOURS:39

LIFE SKILLS : AN APPROACH TO A HOLISTIC WAY OF LIFE CODE:19VE/SS/HL63 CREDITS:3 L T P:3 0 0 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

• To help students grow in spirituality and to experience themselves as integrated persons

• To help students understand themselves as relational beings and appreciate their role in family and society

• To help students recognize the commonality and differences of the different religious in India

- To help students grow in an awareness of the protective laws regarding women
- To prepare students to make informed choices in family and career

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Appreciate themselves as integrated persons
- Recognize their role in family and society and become aware of the different protective laws in favour of women
- Make prudent choices for career and family
- Manage work life balance
- Live a harmonious life and be a channel of peace

ESSENTIALS OF NANOSCIENCE

CODE:19PH/ME/EN45 CREDITS:5 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To introduce the students to the developing field of nanoscience and technology

• To understand the methods of synthesis, characterization techniques and applications of Nanomaterials

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Apply optical properties of materials at nano scale and analyze the synthesis techniques
- Analyze various characterization techniques
- · Discern the basic knowledge of nanomaterials to technological applications
- · Implement the synthesis techniques in tailoring of nanomaterials
- Describe the basic science behind the properties of materials at the nanometer scale

LASER PHYSICS

CODE:19PH/ME/LP45 CREDITS :5 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To study the principles of Laser
- To acquaint student with different types of Lasers and their applications

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand light matter interaction
- Understand the basic principle and operation of a Laser
- Differentiate various types of lasers and their means of excitation
- · Identify the various types of Lasers
- Appreciate the usage of Lasers in fields like Medicine, Industry, Defence etc.

COMMUNICATION SYSTEMS

CODE:19PH/ME/CS45 CREDITS:5 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To acquaint students with concepts of communication systems
- To understand the principles of optical and mobile communication systems

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand basics elements of communication systems
- · Analyze the various types of modulation principles
- Apply the concepts of communication techniques to various modes of communication
- · Demonstrate understanding of various modulation and demodulation techniques
- Recognize and classify the structures of optical fibre

SPECTROSCOPY

CODE:19PH/ME/SP45 CREDITS:5 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To expose the students to the basic principles of spectroscopy
- · To provide an idea about instrumentation and the applications of spectroscopy

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Have knowledge about interactions of electromagnetic radiation and matter
- Understand the various spectroscopic techniques
- Explain the basic science behind the Microwave, Infrared and Raman spectroscopic techniques
- Show an ability to select a suitable characterization technique for their research
- Describe the basic concepts related to Nuclear Magnetic Resonance

PROJECT

CODE:19PH/ME/PR45 CREDITS:5

BASIC PRINCIPLES OF PHYSICS

CODE:19PH/GE/BP22 CREDITS:2 L T P:1 0 1 TOTAL TEACHING HOURS:26

OBJECTIVES OF THE COURSE

- To learn the basic concepts of physics
- · To understand the principles of various machines through experiments

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Demonstrate conceptual understanding of the fundamental Physics principles.

- Explain the behavior of light in different mediums
- Understand the basic concepts of Current, Electricity and Voltage.
- Apply the basics laws of mechanics to understand the working of simple machines.
- Appreciate the usage of the basic concepts of Physics in everyday life.

HOME ELECTRICAL INSTALLATIONS CODE:19PH/GE/HE22 CREDITS:2 L T P:1 0 1 TOTAL TEACHING HOURS:26

OBJECTIVES OF THE COURSE

- To understand the working principles of domestic electrical appliances
- To gain the ability to carry out simple electrical repair works

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand the basic concepts of Current, Electricity and Voltage.
- Understand the working and usage of basic circuit components in circuits.
- Implement various safety measures and precautions when handling electrical appliances
- · Have a knowledge of the working principles of few home electrical appliances

• Make comprehensive use of the technical knowledge gained from hands on training to undertake simple electrical repair works.

ENERGY PHYSICS

CODE:19PH/GE/EP22 CREDITS:2 L T P:2 0 0 TOTAL TEACHING HOURS:26

OBJECTIVES OF THE COURSE

• To understand various types of energy

• To stress the importance of conservation of energy and the need for alternate source of Energy

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Learn what energy and work mean in Physics and how they are related to each other.

• Describe the environmental impact of the fossil fuels and the need for cleaner sources of energy.

- Acquire knowledge about all proposed renewable energy technologies
- Explain the production of electricity from renewable sources of energy
- Understand and be aware of the importance of sustainable energy.

WIRELESS COMMUNICATION

CODE:19PH/GE/WL22 CREDITS:2 L T P:2 0 0 TOTAL TEACHING HOURS:26

OBJECTIVES OF THE COURSE

- To study the basic concepts of communication
- To understand the principles of optical and mobile Communications

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Understand types of propagation of electromagnetic radiation
- · Understand the basics of AM and FM transmission and reception
- Describe the basics of wireless communication
- · Differentiate four generations of wireless standard for cellular networks
- Acquire a basic understanding of concepts related to Bluetooth, GPS and Hotspot.

GEOPHYSICS

CODE:19PH/UI/GP23 CREDITS:3

OBJECTIVE OF THE COURSE

• To learn the basics of Geophysics and the dynamics of Earth

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand the structure and evolution of our planet
- Acquire knowledge on the formation of oil and gas.
- Apply physics to the study of earth
- Describe the Earth and the Universe in their generality.
- Understand the fundamentals of Seismology for the exploration of oil reservoirs.

ASTROPHYSICS

CODE:19PH/UI/AP23 CREDITS: 3 OBJECTIVE OF THE COURSE • To learn about stars and constellations

OUTCOME OF THE COURSE

On completion of the course students will be able to

- Demonstrate a basic understanding of the stars, galaxies and our Universe.
- Understand the violent universe -white dwarf, neutron stars and black hole.
- · Acquire knowledge about unsolved mysteries of the universe
- Understand the exoplanets in the solar system

• Describe the general observed properties of star and their formation and evolution with respect to HR diagram.

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086

Programme Learning Outcomes/Intended Programme Learning Outcomes

Graduates of a Master's Degree of Stella Maris College will have a comprehensive knowledge of

their disciplines, with in-depth knowledge of the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning.

At the end of a postgraduate programme students will be able to

• Demonstrate mastery in the discipline

- Demonstrate deep understanding of the broad principles of science and technology and apply them in varied contexts
- · Demonstrate knowledge, understanding and professionalism required for the discipline
- Demonstrate capability to locate, evaluate, manage, and use information/data and research to develop and guide their own knowledge, learning, and practice
- Demonstrate the ability to organise a presentation in a coherent fashion
- Demonstrate the literacy and numeracy skills necessary to understand and interpret information/data and communicate according to the context
- Draw on multiple, relevant/interrelated fields of study to understand, analyse and solve problems

• Exhibit principled decision making and reasoning to identify creative solutions to ethical problems

• Practice/act in ways that show a commitment to social justice and the processes of peace/conflict resolution

• Demonstrate the skills to appropriately interact with people from a range of cultural, linguistic, and religious backgrounds

- · Demonstrate an understanding of local, regional, national, and global issues
- · Identify themselves as agents of change
- Demonstrate the ability to solve an issue
- · Show self-awareness and emotional maturity
- Demonstrate career and leadership readiness
- · Exhibit the ability to work in teams

• Demonstrate sensitivity and readiness to share their knowledge and capabilities with the marginalised and oppressed in their communities

PROGRAMME SPECIFIC LEARNING OUTCOMES

On successful completion of the programme, the students will be able to

- · Demonstrate conceptual understanding of physics, its models and their limitations
- Perform calculations in theoretical physics using qualitative and quantitative reasoning including sophisticated mathematical techniques

• Show the ability to follow and critically assess developments in the field of physics by using relevant physical literature and databases.

· Conduct independent research or work successfully in a technical position.

• Demonstrate the ability to critically and creatively identify and formulate problems using appropriate methods.

• Carry out advanced tasks like computations, simulations, observations and experiments in Physics.

• Communicate the critical importance of physics in the society.

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI 600 086 M.Sc. DEGREE : Branch III PHYSICS COURSES OF STUDY

(Effective from the academic year 2019-2020) CHOICE BASED CREDIT SYSTEM

C-Credit, L-Lecture Hours, T-Tutorial Hours, P- Practical Hours, Ex-Exam Hours, CA- Continuous Assessment Marks, ES-End Semester Marks, M-Maximum Marks									
Subject Code	Title of Course	С	L	Т	Р	E x	C A	ES	Μ
SEMESTER-I									
									10
19PH/PC/MP14	Mathematical Physics I	4	4	1	0	3	50	50	0
									10
19PH/PC/SM14	Statistical Mechanics	4	4	1	0	3	50	50	0

							1		10	
19PH/PC/EL14	Electronics I	4	4	1	0	3	50	50	10 0	
10PH/DC/D114	Experimental Physics I	1	0	0	Q	2	50	50	10	
19111/10/1114	Department Elective I	+	0	0	0		50	50	0	
		-							10	
	SAP / SL	2	2	0	0	-	-	50	0	
	SEMESTER-II									
				1			50	50	10	
19PH/PC/MP24	Mathematical Physics II	4	4	1	0	3	50	50	0	
19PH/PC/CM24	Classical Mechanics	4	4	1	0	3	50	50	$\begin{vmatrix} 10\\0 \end{vmatrix}$	
									10	
19PH/PC/P224	Experimental Physics II	4	0	0	8	3	50	50	0	
	Department Elective II									
	Common Elective I									
							50		10	
CD/EI	Value Education	2	2	0	0	-	50	-	0	
19EL/PK/SS22	Soft Skills	2	2	0	0	-	50	-	$\begin{vmatrix} 10\\0 \end{vmatrix}$	
	SEMESTER-III									
									10	
19PH/PC/QM34	Quantum Mechanics I	4	4	1	0	3	50	50	0	
				1			50	50	10	
19PH/PC/SS34	Solid State Physics	4	4		0	3	50	50	0	
19PH/PC/ED34	Electrodynamics	4	4	2	0	3	50	50	$\begin{vmatrix} 10\\0 \end{vmatrix}$	
									10	
19PH/PC/P334	Experimental Physics III	4	0	0	8	3	50	50	0	
	Common Elective II									
							50		10	
CD/EI	Value Education	2	2	0	0	-	50	-	0	
19PH/PN/SI32	Summer Internship	2	0	0	2	-	50	-	$\begin{vmatrix} 10\\0 \end{vmatrix}$	
	SEMESTER-IV	_!								
									10	
19PH/PC/QM44	Quantum Mechanics II	4	4	1	0	3	50	50	0	
	Nuclear and Elementer Deuticle Diversion			1		2	50	50	10	
19PH/PC/NP44	Nuclear and Elementary Particle Physics	4	4	1	0	3	50	50	10	
19PH/PC/EL44	Electronics II	4	4	1	0	3	50	50	0	
		+							10	
19PH/PC/DS47	Dissertation	7	0	0	9	-	50	50	0	
	Department Elective III									
Postgraduate Elective Courses Offered to Parent Department										

						-			
19PH/PE/CP15	Crystal Physics	5	5			3	50	50	10
		5	5			5	50	50	10
19PH/PE/RP15			_				50	50	
	Reactor Physics	5	5	0	0	3	50	50	0
19PH/PE/MN15									10
	Material Physics and Nanoscience	5	5	0	0	3	50	50	0
									10
19PH/PE/MU15	Medical Physics and Ultrasonics	5	5	0	0	3	50	50	0
									10
19PH/PE/AP15	Astrophysics	5	5	0	0	3	50	50	0
									10
19PH/PE/GP15	Geophysics	5	5	0	0	3	50	50	0
									10
19PH/PE/SP15	Spectroscopy	5	5	0	0	3	50	50	0
Postgraduate Elec	tive Courses Offered to Other Departments	-	-	-	-				
									10
19PH/PE/ED23	Everyday Physics	3	2	0	1	3	50	50	0
									10
19PH/PE/EI23	Electrical Installations	3	2	0	1	3	50	50	0
									10
19PH/PE/EP23	Energy Physics	3	3	0	0	3	50	50	0
Independent Elect	Independent Elective Courses								
								10	10
19PH/PI/DC24	Digital Communication	4	0	0	0	3	-	0	0
	Data Communication and Computer							10	10
19PH/PI/DN24	networks	4	0	0	0	3	-	0	0

MATHEMATICAL PHYSICS I

CODE:19PH/PC/MP14 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• The foundations to various mathematical techniques and tools like numerical methods, transform techniques and special functions which forms the back bone of all higher physics is introduced.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Explain the main mathematical methods used in physics.
- · Understand the fundamentals of Numerical and Complex Analysis
- · Be familiar with important special functions in mathematical physics including

Legendre Polynomial and Bessel function

• Master the tools from vector and tensor analysis that are important prerequisites for other theoretical physics courses like electrodynamics or continuum mechanics.

· Demonstrate accurate and efficient use of specific mathematical physics techniques

STATISTICAL MECHANICS

CODE:19PH/PC/SM14 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To create a thorough understanding of how a real system should be understood by the linking of thermodynamics with kinetic theory using statistical methods

• To develop understanding of the importance of entropy in this linking

• To learn the concept of ensembles – tackle the simplest case of ideal gas in different ensembles

• To invoke the quantum picture, density matrix and quantum gases

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

· Understand the basic ideology of phase space, microstate and macrostate

• Give an account of the relevant quantities used to describe macroscopic systems, thermodynamic potentials and ensembles.

• Apply the principles of probability in distribution of particles in various systems and to calculate thermodynamic probability.

• Distinguish between different types of particles and statistics and can easily distribute bosons, fermions and classical particles among energy levels.

• Show an analytic ability to solve problems relevant to statistical mechanics

ELECTRONICS I

CODE:19PH/PC/EL14 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• Appreciate the significance of electronics in different applications.

• Compile the different building blocks in digital electronics using logic gates and implement simple logic function using basic universal gates

• Familiarize the students with the Op-Amp IC and its applications.

• To introduce the basic architecture, operation and interfacing of microprocessors.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Understand operation of diodes, transistors in order to design basic circuits
- Explain the functioning of field-effect transistors.
- Demonstrate understanding of shift register basics, the various kinds, their operating characteristics, and applications.
- Write assembly language program for 8085
- Students will be able to understand various types of memory systems.

EXPERIMENTAL PHYSICS I

CODE:19PH/PC/P114 CREDITS:4 L T P:0 0 8 TOTAL HOURS:78

MATHEMATICAL PHYSICS II

CODE:19PH/PC/MP24 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65 OBJECTIVES OF THE COURSE

• Advanced mathematical tools essential for various theoretical models in all branches of physics are introduced with aim to enable students solve problems.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Express in depth understanding of the partial differential equations

• Be familiar with differential forms as tools that allow to solve physical problems with simplicity

• Acquire a basic knowledge of some advanced topics in Mathematical Physics, such as the elements of group theory

• Solve problems using special functions, such as Bessel functions and Legendre polynomials.

• Understand the applications of Fourier Transform in the field of Physics

CLASSICAL MECHANICS

CODE:19PH/PC/CM24 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To introduce the classical formulation approaches like Lagrangian and Hamiltonian

dynamics in understanding mechanical systems and solving problems.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand planar and spatial motion of a rigid body,
- Utilize appropriate mathematical tools to analyse and solve a system's equations.
- Demonstrate a basic knowledge of Lagrangian and Hamiltonian dynamics.
- Apply Lagrangian & Hamiltonian methods to complex motion problems.
- Demonstrate an understanding of the central-force motion.

EXPERIMENTAL PHYSICS II

CODE:19PH/PC/P224 CREDITS:4 L T P:0 0 8 TOTAL HOURS:78

SOFT SKILLS

CODE: 19PH/PK/SS22 CREDITS: 2 L T P: 2 0 0 TOTAL TEACHING HOURS: 26

OBJECTIVES OF THE COURSE

- To empower students and create opportunities for self-development.
- To instill confidence in students to face challenges.
- To manage emotions and resolve conflicts.
- Top organize activities and manage time.
- To set goals and plan ahead.

COURSE LEARNING OUTCOMES

- Communicate with confidence and poise.
- · Accept themselves and improve on their weaknesses.
- Strengthen their relationships through confronting and solving problems.
- Work more effectively and complete activities on time.
- Plan their future with clarity and focus.

QUANTUM MECHANICS I

CODE:19PH/PC/QM34 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To understand the basic concepts of quantum mechanics.
- To have an in-depth knowledge of intermediate quantum mechanics.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Demonstrate an understanding of how quantum states are described by wave functions

• Demonstrate an understanding of the significance of operators and eigenvalue problems in quantum mechanics

• Solve the Schrodinger equation and describe the properties of the simple harmonic oscillator

· Demonstrate an understanding of angular momentum in quantum mechanics

• Learn approximate methods for solving the Schrödinger equation (the variational method, perturbation theory, Born approximations)

SOLID STATE PHYSICS

CODE:19PH/PC/SS34 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To understand the properties of metals

• To learn the magnetic properties of materials

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Understand the basics of the Free Electron model and calculate electrical and thermal properties

· Clearly describe the cause for different types of magnetism in materials

- · Account for what the Fermi surface is and how it can be measured
- Describe the phenomenon of superconductivity

• Distinguish between perfect conduction and perfect diamagnetism, and give a qualitative description of the Meissner effect

CODE:19PH/PC/ED34 CREDITS:4 L T P:4 2 0 TOTAL TEACHING HOURS:78

ELECTRODYNAMICS

OBJECTIVES OF THE COURSE

• To study the laws governing the distribution and propagation of electromagnetic fields created by static and dynamic charge distributions and their interaction with matter.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

• Have a deep understanding of the theoretical foundations of electromagnetic phenomena

- Understand the usage of basic concepts of electromagnetism
- Be able to solve the Maxwell equations for simple configurations
- Describe and explain electrodynamics, and explain Maxwell's equations in vacuum;
- Show an ability to solve problems in electrodynamics

EXPERIMENTAL PHYSICS III

CODE:19PH/PC/P334 CREDITS:4 L T P:0 0 8 TOTAL HOURS:78

SUMMER INTERNSHIP

CODE:19PH/PN/SI32 CREDITS:2

OBJECTIVES OF THE COURSE

• To familiarize the students to research ambience.

• To expose he students to various experimental and analytic techniques related to research.

• To enable the students to have a hands-on experience to work in their desired field. It will help them learn how their course of study applies to the real world and build a valuable experience that makes them stronger candidates for jobs after graduation

CODE:19PH/PC/QM44 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

QUANTUM MECHANICS II

TOTAL TEACHING HOURS.05

OBJECTIVE OF THE COURSE

• To introduce time dependent perturbation theory, its applications

• To understand the concepts of relativity and relativity in quantum mechanics, symmetries in QM

• To introduce the concepts of quantum field theory.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Formulate and solve problems in quantum mechanics using Dirac notation
- Describe the importance of symmetry and conservation laws in quantum mechanics

• Acquire knowledge of non-relativistic and relativistic quantum mechanics including time-dependent perturbation theory, scattering theory, relativistic wave equations, and second quantization.

- Recognise the connection between relativity and quantum mechanics
- · Analyse physical system in a quantum mechanical way

NUCLEAR AND ELEMENTARY PARTICLE PHYSICS CODE:19PH/PC/NP44 CREDITS:4 L T P: 4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVE OF THE COURSE

• To explore the understanding of nuclear models and various physical properties of nucleus.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Learn the concepts in particle and nuclear physics
- Explain the role of spin-orbit coupling in the shell structure of atomic nuclei, and

predict the properties of nuclear ground and excited states based on the shell model

- · Describe the different types of elementary particle interaction
- Explain the different forms of radioactivity and account for their occurrence
- Be familiar with current research in Nuclear Physics.

ELECTRONICS II

CODE:19PH/PC/EL44 CREDITS:4 L T P:4 1 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- Explore the architecture microcontroller 8051.
- Write assembly language program in 8086 and 8051 for various applications.
- Select a microprocessor or a microcontroller suitable for the given application.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

· Compare microprocessors and microcontrollers.

- Describe the architecture and instruction set of 8085 and 8051
- Understand programming and interfacing of microprocessors and microcontrollers.
- Explain the interfacing between microprocessor and various peripherals.
- Analyse the embedded system concept

DISSERTATION

CODE:19PH/PC/DS47 CREDITS:7

CRYSTAL PHYSICS

CODE:19PH/PE/CP15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To know the different structures of crystals

• To understand types of characterization of crystals and its applications

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Recognize the applications of X-ray crystallography
- Understand the crystal structure and thermal properties of materials.
- Understand the influence of lattice vibrations on thermal behaviour.
- Relate crystalline structure to X-ray diffraction data and the reciprocal lattice.
- Understand the influence of crystal binding energy on crystalline structure.

REACTOR PHYSICS

CODE:19PH/PE/RP15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To expose the students to the physics of neutrons and fuel inside a reactor.

• To understand the construction of a nuclear reactor and precautions to be taken in its Operation

COURSE LEARNING OUTCOMES

- Discuss the various aspects of reactor physics.
- demonstrate a knowledge of fundamental aspects of the structure of the nucleus,

radioactive decay, nuclear reactions and the interaction of radiation and matter;

- Explain processes of nuclear collisions and nuclear reactions.
- describe the physical processes as well as the different components of a nuclear power plant
- Understand important reactor parameters including performance and safety
- Acquire a clear understanding of the applications of nuclear physics

MATERIAL PHYSICS AND NANOSCIENCE CODE:19PH/PE/MN15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To introduce the rapidly developing field of nanoscience and technology with special focus on the methods of synthesis, characterization techniques and applications of nanomaterials

• To understand the necessary concepts in nanotechnology

• To develop skills to perform their project works related to the synthesis and characterization of nanomaterials by direct experience.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Explain the basic concepts of Nanoscience and Nanotechnology
- Give an account of the various synthesis procedures for nanofabrication
- · Describe the state-of-the-art characterization methods for nanomaterials
- · describe the size effects induced changes on material properties

• Exhibit a broad and coherent knowledge of nanoscale phenomena and describe how and why materials and systems at the nanoscale differ from those at macro- and micro-scales.

MEDICAL PHYSICS AND ULTRASONICS

CODE:19PH/PE/MU15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To learn the fundamentals of health Physics.
- To acquire knowledge about diagnostic and therapeutic devices.

COURSE LEARNING OUTCOMES

• Acquire a better understanding of the importance of physics for medical diagnosis and treatment.

• Explain and describe the physical concepts for different modalities used in medical diagnosis and treatment.

• Learn how different external physical factors including ionizing radiation, electrical and magnetic fields and thermal effects influence biological systems.

• Understand the Physics of medical imaging

• Describe the application of physics principles such as ultrasound and Nuclear Magnetic Resonance

ASTROPHYSICS

CODE:19PH/PE/AP15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

• To learn about stars and constellations

• To appreciate the universe.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Understand the violent Universe -white dwarf, neutron stars and black hole.
- Explain the origin of our universe
- Describe the structure and evolution of stars

• Describe the general observed properties of star and their formation with respect to HR diagram.

• Understand the basic concepts of modern astrophysics, such as: Stellar classification and spectroscopy, solar system and planetary motion, stellar evolution and nuclear fusion etc.

GEOPHYSICS

CODE:19PH/PE/GP15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVE OF THE COURSE

• To provide brief introduction to seismology and to have a look at the experimental data supporting electric and magnetic properties of earth.

COURSE LEARNING OUTCOMES

- Understand the structure and evolution of the Earth
- Apply Physics to the study of the Earth
- Different techniques used to map and analyze the physical properties of the Earth.
- Understand the physical principles of reflection seismology

• Appreciate the application of geophysics for understanding the physical conditions of the Earth's multi-layered interior.

SPECTROSCOPY

CODE:19PH/PE/SP15 CREDITS:5 L T P:5 0 0 TOTAL TEACHING HOURS:65

OBJECTIVES OF THE COURSE

- To have in depth understanding of various techniques of spectroscopy
- To study its applications to modern science.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- Acquire an advanced knowledge about the interactions of electromagnetic radiation and matter and their applications in spectroscopy
- Explain the basic principles of IR, Electronic, Vibrational and Nuclear spectroscopy
- Discuss the basic components common to most spectroscopic instruments
- Understand the use of these spectroscopic methods for organic structure elucidation
- Choose an appropriate spectroscopic technique in their research.

EVERYDAY PHYSICS

CODE:19PH/PE/ED23 CREDITS:3 L T P:2 0 1 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

- To learn the basic concepts of physics
- · To understand the principles of various machines through experiments

COURSE LEARNING OUTCOMES

- Explain how Physics applies to phenomena in the world around them.
- Understand basic concepts related to Mechanics, Optics, Magnetism, Electricity and Sound

- · Acquire a better understanding of these fundamental concepts through experiments
- · Appreciate the relation between Electricity and Magnetism
- · Understand the basics of light matter interaction

ELECTRICAL INSTALLATIONS

CODE:19PH/PE/EI23 CREDITS:3 L T P:2 0 1 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

- To understand the working principles of the domestic electrical appliances.
- To learn safety measures in the usage of electricity and in handling simple repair works.

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

- · Learn about the significance of electric components
- Understand the significance of various devices and how they operate
- · Assess the electricity consumption of household electrical appliances
- Have an hands on experience
- Be aware of the safety practices for handling electrical equipment
- Undertake minor electrical repair works

ENERGY PHYSICS

CODE:19PH/PE/EP23 CREDITS:3 L T P:3 0 0 TOTAL TEACHING HOURS:39

OBJECTIVES OF THE COURSE

• To understand various types of energy

• To stress the importance of conservation of energy and the need for alternate source of Energy

COURSE LEARNING OUTCOMES

- Explain the production of electricity from renewable sources of energy
- Acquire knowledge about all proposed renewable energy technologies
- · Understand the impact of non-renewable energy sources on our environment
- Describe the need for alternate sources of energy

• Understand the significance of energy conservation and sustainable energy Development